
HowTo setup a jETI Service Provider (jETI Server)

 07.06.2006

Welcome to jETI
This document should give you a short overview on how to install a jETI Server to
provide services for remote usage within the jABC. We show the few configuration
steps necessary to start providing services, and demonstrate them on an example.

Prerequisites: To begin
installing a jETI Server
you would need to have
some things already instal-
led on your machine. The
following table shows up

what you would need to be able to start over.

Required min. Version

A Unix based OS (like
Linux, Solaris, etc.)

any

Java Software Deve-
lopment Kit

1.5.0_06

Apache Ant any

Bash shell any

Installation: The jETI Service Provider comes as a
ziped archive which you only need to unzip to a
directory of your choice. After that, the server is
ready to run. Anything else needed is include
within the archive.

Configuration: After installing the server you have
to change some configuration files to your needs.
There are three files which need your attention.

• config/jeti.properties

• sibcreator/etc/sibcreator.properties

jeti.properties

Variable Description

jeti.toolxml The location of the
tools.xml file

jeti.session.folder The relative folder
where the toolsever
shall store session
data (with ending /)

jeti.session.timeout Session timeout in
milliseconds

jeti.session.checkinterval Time between each
check for timed out
sessions

jeti.connector.soap.warfile The relative WAR file
of the soap connector

jeti.connector.soap.port The port the soap
connector shall use

jeti.connector.sepp.port The port used by the
sepp connector (used
by JavaME jETI cli-
ents)

jeti.configurator.port The port where you
could reach the
HTML configurator

1

Variable Description

jeti.log4j.propertyfile The location of the
configuration file u-
sed by the logger

sibcreator.properties

Variable Description

sibCreator.templateDir The location of the
template used for
generating SIBs

sibCreator.logfileName The location of the
log file

sibCreator.etiToolList Location of the
tools.xml

sibCreator.etiServer The URL of the jE-
TI Executor Web-
service

sibCreator.velocityOutputPath The relative location
to store the genera-
ted sibs

Running the server: After configuring the server
you can start by executing the toolserver.sh script
within the main directory of the server. Be sure to
set your path to JAVA_HOME correctly within the
script file before launching the server. The script is
able to handle three Parameters which are shown in
the following table.

Parameter Description

run Starts the service provider in fore-
ground mode (use CTRL-C to
stop)

start Starts the service provider in
background mode

stop Stops service providers running in
background mode

After starting the server you need to setup your
services for providing them online. At this point,
jETI only supports services that can be executed at
the commandline of your system. There is no sup-
port for applications using a GUI yet. Anyway, the-
re is a way to call any Java Class which is able to

be instanced at the server site (see section Configu-
ring services by hand for detailed information).

Configuring services using the HTML Configu-
rator: The easiest way to configure your services
would be using the HTML configurator which is a
graphical user interface to edit your tools.xml
where the service descriptions are stored. You can
access the interface by launching a web browser
and opening the URL of the service provider by
using the configurator port defined inside your
jeti.properties (default is 8081). The HTML Confi-
gurator shows up giving you a list of all services
currently installed (see figure 1 of the appendix).
By selecting the checkboxes in front of each ser-
vice you can enable or disable the availability of
the tools. Behind each service you will find links to
edit or delete a tool or watch a detailed description.
To create a new service just click on the “Create
new tool“ button at the bottom of the site and the
create/edit page shows up (see figure 2 of the ap-
pendix). There you will find options to define the
name of your service (containing no spaces!), a
description and the commandline call and parame-
ters. The expert mode is only needed if you want to
change settings of the internal executing environ-
ment, e.g. to call a Java Class instead of a com-
mand line service, which we will not discuss at this
point (see section Configuring services by hand for
detailed information).

The following table gives an overview of the pos-
sible parameter settings you can change within the
HTML Configurator.

Parameter
type

Class type Description

Optional String, Integer,
Float, Input file,
Outpu file

An optional
parameter edi-
table inside the
generated SIB

Required String, Integer,
Float, Input file,
Outpu file

A required pa-
rameter editable
inside the gene-
rated SIB

2

Parameter
type

Class type Description

Optional with
default value

String, Integer,
Float, Input file,
Outpu file

An optional
parameter with
a predefined
value editable
inside the gene-
rated SIB

Static String, Integer,
Float, Input file,
Outpu file

A static value
which is not
editable inside
the generated
SIB.

To change the type of a parameter to a class not
supported by default you also need to switch to the
expert mode mentioned above by clicking the rela-
ting button at the overview page of the HTML Con-
figurator. To define the commandline call to your
service, simply add a static parameter containing
the execution call. As there are no spaces allowed
within parameter definitons you will have to define
one parameter per word of the call. For instance if
your service is invoked by calling java -jar
servic.jar you will have to define three static para-
meters containing one single word of the com-
mandline call each. The order of the paramters can
be switched by clicking on the arrows displayed
within the parameter overview.

To define relations between parameter you are able
to add so called unions which simply means that
you define a “container“ containing a set of para-
meters. For instance, if an optional parameter
within a union is not defined by the user within the
generated SIB later on, the whole set of parameters
inside this union is ignored during execution of the
service. This is usefull when calling a commandline
service handling optional parameters. If a value for
this paramter is set the call is made invoking the
paramter and the value, else neither is done (e.g.
convert -rotate 90), if inside a union.

After defining and enabling your services you can
click on the download link to the left of the HTML
Configurator site, getting to the download page
(see figure 3 of the appendix). Do not forget to save
your tools.xml configuration by clicking on the re-
lating button at the bottom of the overview site of

the HTML Configurator. Otherwise your changes
to the services are not activated!

Once your services are defined and enabled, you
are ready to generate the SIBs to be used within the
jABC by the clients developing workflows and ser-
vice chains. At the download page you can invoke
the generation of SIBs to use within the jABC by
clicking on the download button at the bottom of
the site. After the generation is finished you will
get a JAR file containing all the SIBs of your enab-
led services. Simply import this JAR within your
jABC project and use your remote jETI tools as if
they were locally available. If there is an error du-
ring generation it will be presented at the top of the
download page.

Configuring services by hand: Expert users may
also configure their services by directly editing the
tools.xml file. The following instructions assume
that you are familiar to XML and know how to
handle those files.

<etitoolserver></etitoolserver>

This is the surrounding root tag of the whole XML
document. It has no parameters.

<tool></tool>

This is the surrounding tag of each service to be
defined whithin the tools.xml. It has options name
defining the name of the service, active defining
the status of the service, class setting up the class to
be instanced by the server and method defining the
method to be called. If you want to call a com-
mandline application as a jETI service you have to
specify the specific runtime class and method fit-
ting the requirements of your operating system and
special parameters defining the commandline in-
structions. The default would be
de.unido.ls5.eti.executor.RuntimeUnix calling me-
thod exec.

In general you are able to remotely call any method
of any class of Java objects on the server. The order
of the parameters within the tool.xml file defines
the signature of this method the jETI Server is loo-
king for via Reflection API.

3

<parameter></parameter>

This is the surrounding tag of each parameter. It
has options name defining the name of the parame-
ter, class specifying the type of the parameter, va-
lue giving an initial fixed value, default giving an
initial default value, required specifying whether
the parameter has to be set or not, description gi-
ving detailed information of the parameter and
classArgument to test if the parameter fullfills spe-
cial conditions (for instance if a number has a value
between 0 and 1 or if a String contains only charac-
ters). To use the classArgument options the parame-
ter class has to implement two methods setClas-
sArgument(String s) and validateClassArgument().
If validateClassArgument() returns an error, an
exception has to be thrown and delegated to the
client With all those options to be set there is the
possibility of defining different types of parame-
ters as shown by the table below.

Required Value Default Type

false not set not set optional

false set not set static

false not set set optional with
default

false set set not def.

true not set not set required

true set not set not def.

true not set set not def.

true set set not Def.

The meaning of the parameter types is defined as
follows.

Type Description

Optional If the parameter is send
by the client, it is in-
stanced by the server,
otherwise not.

Type Description

Optional with default va-
lue

If the parameter is send
by the client, it is in-
stanced by the server,
otherwise it is set to the
default value.

Required Parameter has to be
send by the client. If not
a RequiredParameter-
NotSedException is
thrown and send to the
client.

Static Parameter with a static
value. Could not be
changed by the client.

<array> </array>

To freely define the number of parameters of a type
you can give arrays as parameters of a method. The
array tag has an option class defining the type of
elements of the array to be taken. For instance the
method exec included within the RuntimeUnix class
as mentioned above takes an array of objects as a
parameter. To define which values are included
within an array the tag has to include different pa-
rameter tags. It is important to keep the class opti-
ons of arrays and parameters consistent.

<union> </union>

The union tag combines several parameters to a
group of parameters depending on each other. For
instance, if a union contains a required parameter
which is not send by the client as it has to be by
definition, the whole union is ignored. A union has
no options to be specified.

Defining own classes for input- and output files

To write own classes relating to input- and output
files, those classes have to inherit
de.unido.ls5.eti.executor.FileReference because of
internal methods handling relative and absolute fi-
lenames within session at the server. To get the SIB
Creator to know if the file is an input or output pa-
rameter the class names have to begin with “Input“
or “Output“.

4

Example

An example tools.xml defining a service rotating an
image by using the convert tool of the ImageMagic
package is shown in figure 4 of the appendix.

5

Appendix

Figure 1 - The HTML Configurator tools overview page

6

Figure 2 - The HTML Configurator tool creation/editing page

Figure 3 - The HTML Configurator SIBs download page

7

<etitoolserver>
	
 <tool name='rotate' active='true' class='de.unido.ls5.eti.executor.RuntimeUnix'
method='exec'>
 	
	
 <description>
	
 	
 	
 Rotates an Image by the given amount of degrees with ImageMagick's con-
vert tool.
	
 	
 </description>
 	
	
 <array class='java.lang.Object'>
 	
 	
 <parameter class='java.lang.String' value='convert' />
 	
 	
 <union>
 	
 	
 	
 <parameter class='java.lang.String' value='-rotate' />
 	
 	
 	
 <parameter name='ROTATEANGLE' class='java.lang.Integer' default='90'
description='Amount of degrees to rotate, default is 90' />
 	
 	
 </union>
 	
 	
 <union>
 	
 	
 	
 <parameter class='java.lang.String' value='-radial-blur' />
 	
 	
 	
 <parameter name='BLURANGLE' class='java.lang.Integer' requi-
red='true' description='adds a radial blur to the image' />
 	
 	
 </union>
 	
 	
 <parameter name='INFILE'
class='de.unido.ls5.eti.executor.InputFileReference' classargument='gif' requi-
red='true' description='File to read from' />
 	
 	
 <parameter name='OUTFILE'
class='de.unido.ls5.eti.executor.OutputFileReference' required='true' description='File
to write rotated image to' />
 	
 	
 </array>
	
 </tool>
</etitoolserver>

Figure 4 - A tools.xml example

8

